

Capt. Henrik Ramm-Schmidt CEO / Fleetrange Ltd

Innovasjonskonferansen e-nav.no 2019

What is it all about?

ARTIFICIAL INTELLIGENCE / MACHINE LEARNING SENSOR FUSION FOR AUTONOMOUS VESSEL NAVIGATION (MARITIME AI-NAV)

Funded by

Topics

Status and background

ESA project needs

Our Consortium

Project setup

Goals

Rolls-Royce testing remote operations

General status of autonomous ship projects, achievements and activities

WHERE ARE WE TODAY

Notable projects

Research and players are currently quite concentrated to **North Europe and US**

Korea, Japan, China and Singapore also show activity

Remote control is already well demonstrated

Hull to Hull (H₂H)

Maritime AI-NAV

MUNIN (N. Europe) AAWA (Rolls-Royce et al)

One Sea (DIMECC)

Yara Birkeland (Kongsberg, Yara)

SIMAROS (UK, NO) NYK (et al in JP)

UCSDA (China)

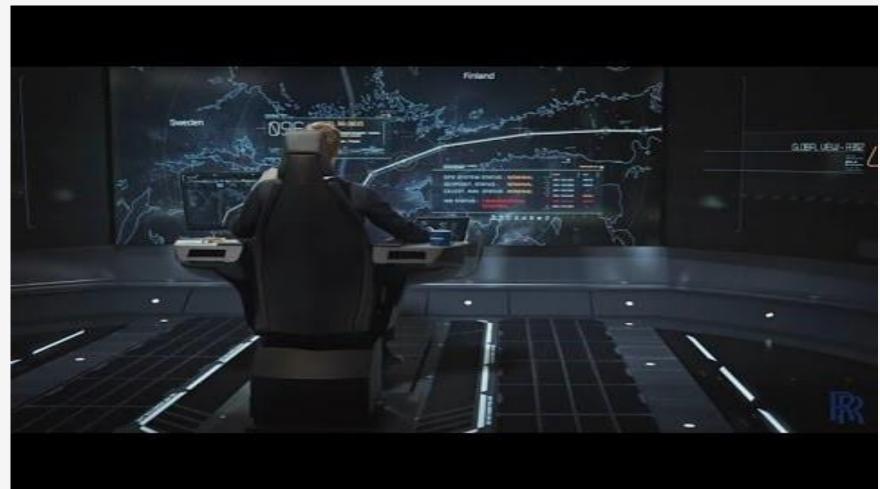
Svitzer, Svan (RC ops) L₃ ASV Sea Machines

A lot of work has been done in smaller **ASVs** (Autonomous Surface Vehicles) for military use

More public

Private / Corporate

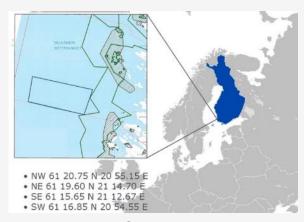
Maritime Unmanned Navigation through Intelligence in Networks


MUNIN was essentially a feasibility study and test-bed development for an **Unmanned Cargo vessel**.

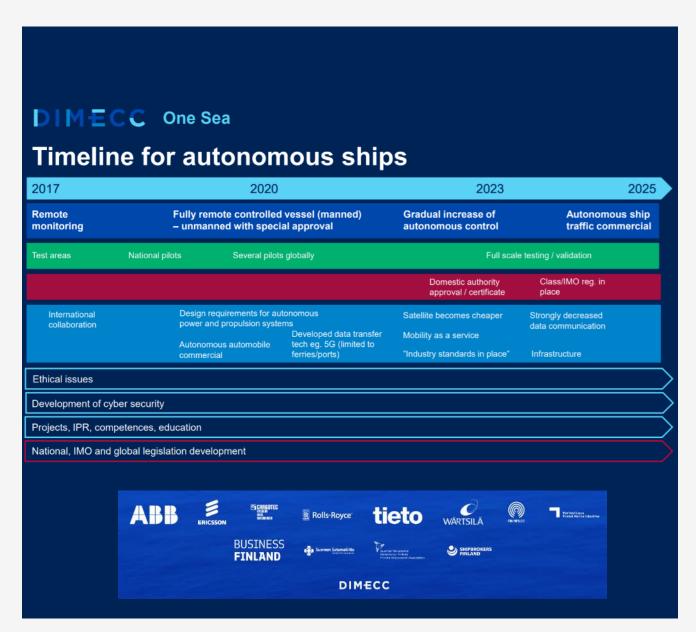
The project looked at technical, economical and legal feasibility.

AAWA Advanced Autonomous Waterborne Applications Initiative

The AAWA initiative looked at technology, safety, incentives (economics) and legal of autonomous vessels in general.

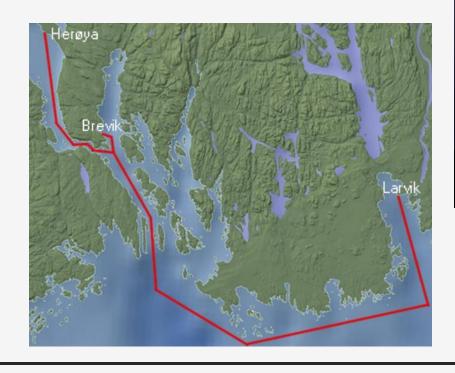


Project whitepaper


One Sea

Autonomous Maritime Ecosystem

One Sea is a Finnish Ecosystem (project), which aims at providing a solid ground for research, testing and collaboration reg. autonomous ships.



One Sea features an open test area "Jaakonmeri"

Yara Birkeland

First ever electric and autonomous

SIMAROS

Safe Implementation of Autonomous and Remote Operation of Ships

The SIMAROS project is one of several Norwegian undertakings. SIMAROS looked mainly at safety aspects.

Other notable Norwegian projects are:

AUTOSEA (Sensor fusion and collision avoidance for autonomous surface vehicles)

ROMAS (Remote Operation of Machinery and Automation Systems)

The Norwegian research is quite focused around NTNU AMOS (Centre for autonomous marine operations and systems), Kongsberg and DNVGL

The SIMAROS project

- SIMAROS: Safe Implementation of Autonomous and Remote Operation of Ships
 - NFR application granted Dec 2016
 - Research project 2017-2019
 - Total Budget: 18MNOK
 - Case: "Hrönn" offshore vessel
 - Contracted 2017, in operation 2018
 - Press release 01.11.2016
- Partners:

DNV GL @ 2017

15 February 2017

Reference partner:

Press Release

Automated Ships Ltd and KONGSBERG to build first unmanned and fully-automated vessel for offshore operations

- First full size unmanned ship to be built through UK and Norwegian co-operation
- Offshore vessel 'Hrönn', to be contracted January 2017 and in operation in 2018

Artists impression of the 'Hran

DNV-GL

NYK

Demonstration Project to Remotely Operate a Ship

NYK, together with its research-arm MTI (and other Japanese companies) has announced plans to demonstrate remote operations of a container ship in Pacific trade.

UCSDA

Unmanned Cargo Ship Development Alliance

This Chinese project is lead by the Chinese Classification Society CCS.

Rolls-Royce, Wärtsilä and ABS (American Bureau of Shipping) have been mentioned as external project partners.

L3 ASV and Sea Machines

In smaller work-boats and ASVs we have seen much more development and products are already in the market.

ASVs have been around for military use already a long time.

Smaller boats in restricted waters benefit from easier local rules, controlled traffic area and easier connectivity. And smaller boats cause less damage if they hit something ©

Wärtsilä successfully tests remote control ship operating capability

Known tests

Remote DP

DEC 3RD 2018 FINLAND

Wärtsilä Rolls-Royce

Finferries

WHY THIS PROJECT

Challenges

Autonomous tech is one of the solutions

Workforce

Transport volumes

Environment

IMO e-Navigation strategy

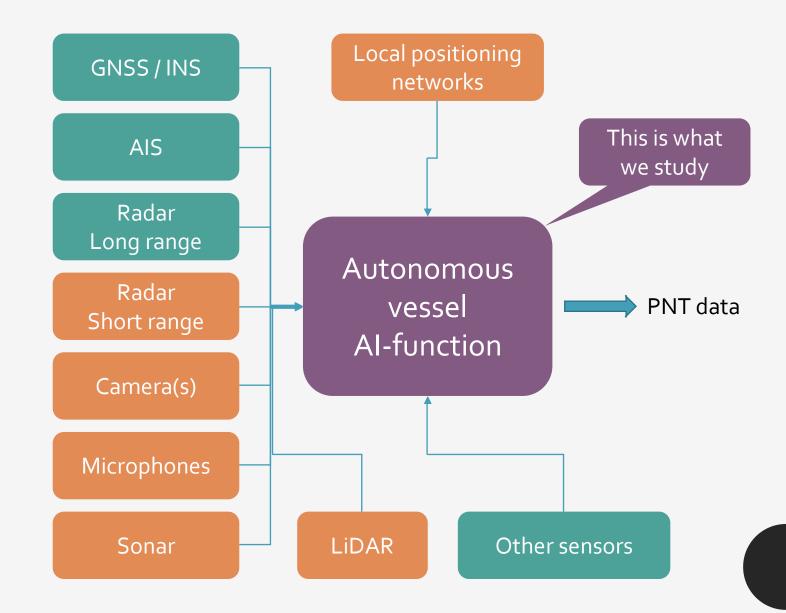
Research and development efforts

Business concepts (MUNIN, AAWA)

Legal (MUNIN, AAWA, IMO MASS etc)

Situational awareness (AUTOSEA etc)

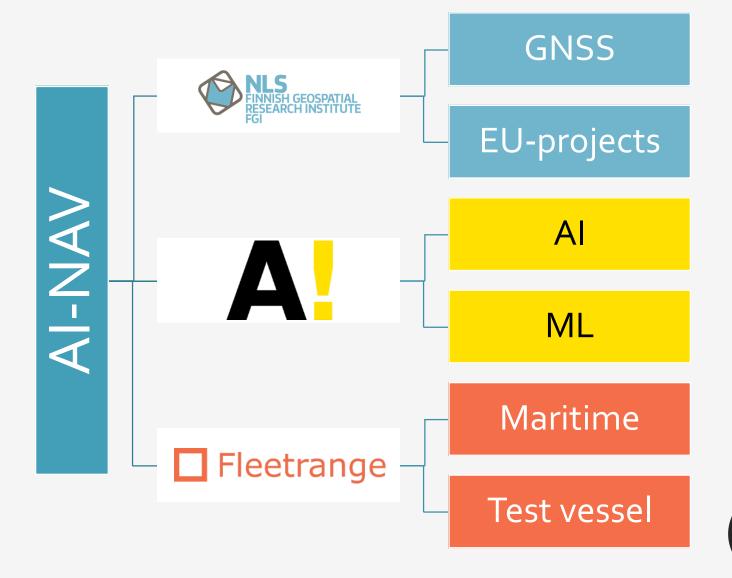
This requires publicly funded research



GNSS sensor fusion, AI+ML, Galileo

ESA needs

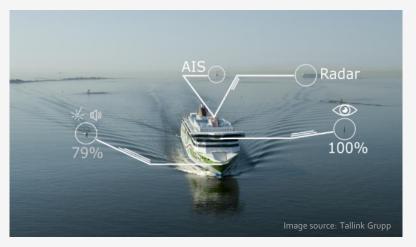
Data from multiple sensors needs to be fused using AI and ML techniques


FGI, Aalto AI ja Fleetrange

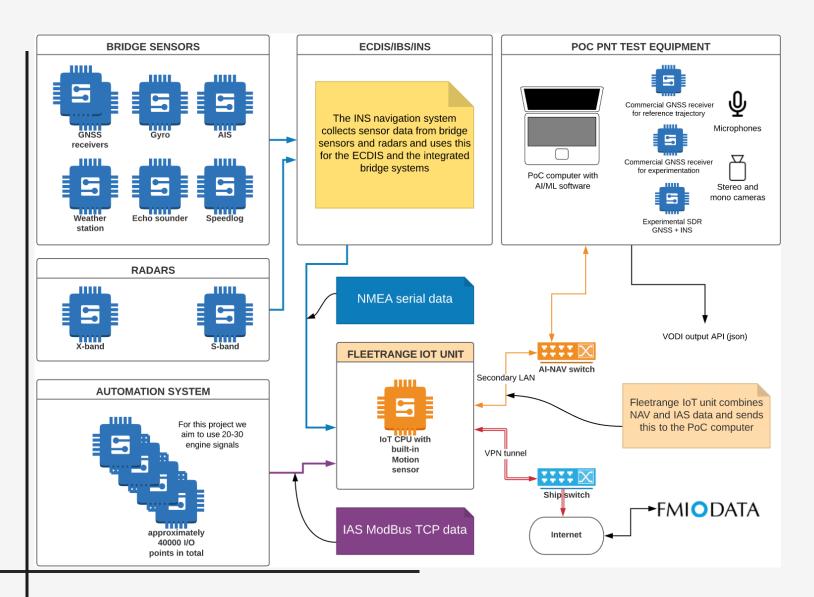
CONSORTIUM

Consortium

Our consortium combines leading
Finnish expertise in the areas of
GNSS, AI and Maritime
operational awareness


Project description

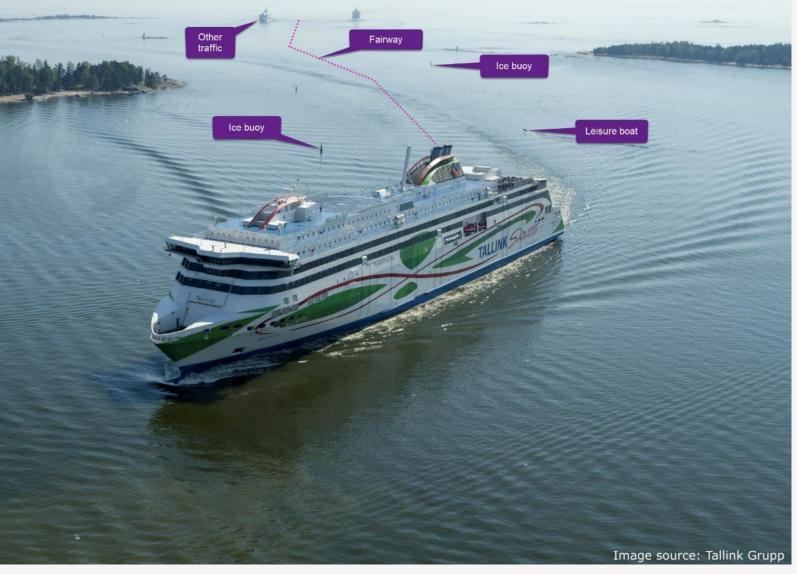
PROJECT


			T0																						
		Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	Kick-off (KO)																								_
Meetings	System Requirements Review (SRR)	Video	Г																						
and	Design Review (DR)	ESTEC				\neg																			
Milestones	Test Readiness Review (TRR)	FGI																							
	Test Evaluation Review (TER)	FGI																							
	Final Acceptance Review (FAR)	ESTEC																							
WP1	WP 1100: State-of-the-art in sensor tech	niques													\vdash					-		\dashv			_
	WP 1200: State-of-the-art in Al methods																								
WP2	WP 2000: Requirement identification &	test plans																							
WP3	WP 3100: AI techniques for image proce	ssing																							
	WP 3200: AI techniques for sound proce	ssing																							
WP4	WP 4100: RADAR and LIDAR																								
	WP 4200: Microphone array and weathe	er station																							
	WP 4300: Stereo-camera system																								
	WP 4400: Absolute positioning with GNS	SS/INS																							
	WP 4500: AIS and databases																								
WP5	WP 5000: Assembly and integration																								
WP6	WP 6100: Laboratory tests																								
	WP 6200: Field tests																								
WP7	WP 7100: Validation field test campaign																								
	WP 7200: Conclusions and recommenda	tions																							
WP8	WP 8100: Project management																								
	WP 8200: Dissemination																								

Timeline

2 years 2019-20Tests primarily 2020Public results

Test vessel is M/V Megastar

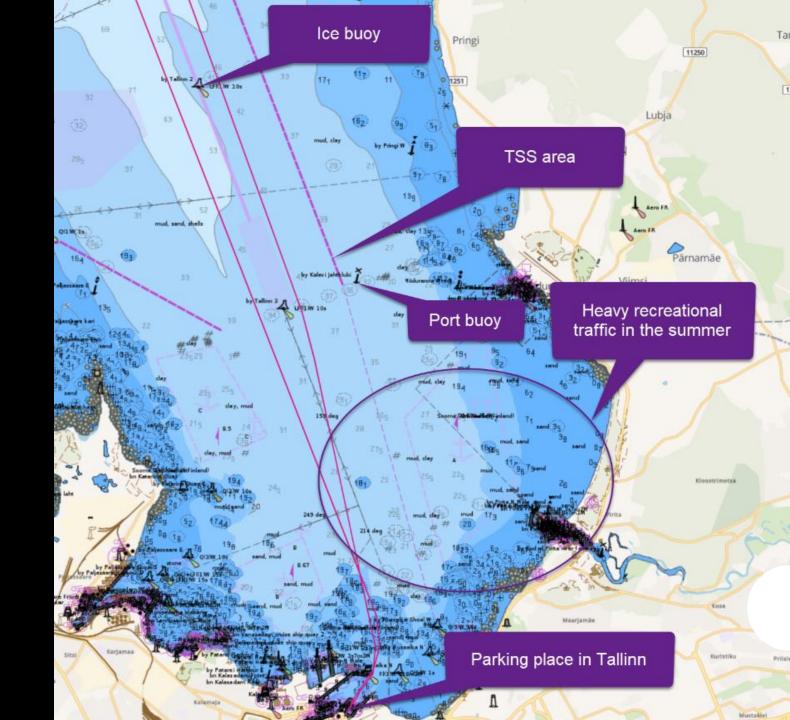

SYSTEM

The test setup consists of PoC sensors as well as ship's own sensors

Megastar Jelsinki Archipelago fairway Traffic to/from Helsinki South Traffic to/from From St Petersburg Potentially challenging crossings with lower angle of attack To St Petersburg Traffic to/from Muuga Leesi Tapurla Traffic to/from Rohuneeme Tallinn Püünsi Lubja * Tallinn

TEST AREA

Helsinki-Tallinn is an EXCELLENT area for sensor testing


The West Harbour offers very good opportunities for operational challenges

HELSINKI WEST HARBOUR

Tallinn

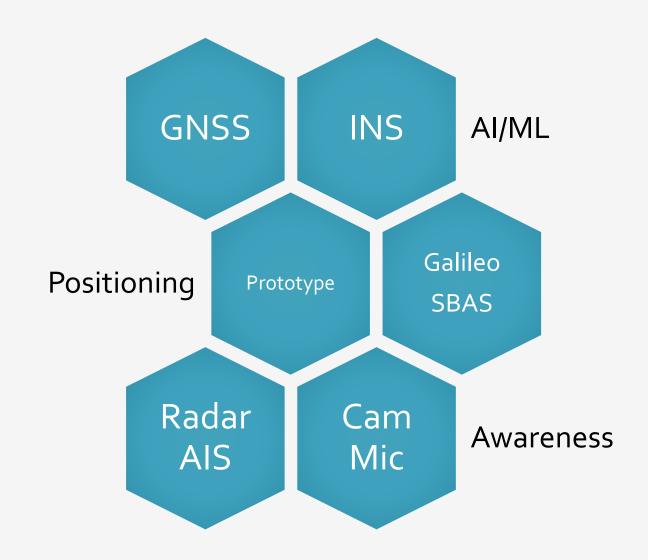
Tallinn Bay offers:

- TSS areas
- Leisure boats
- Virtual AIS-targets

AI-NAV project goals

GOALS

Main goals


AI/ML sensor fusion

More accurate and robust **GNSS** positioning with prototype receiver

Utilisation of the **newest** (European) GNSS services

Improved situational picture

Public results

ARTIFICIAL INTELLIGENCE / MACHINE LEARNING SENSOR FUSION FOR AUTONOMOUS VESSEL NAVIGATION (MARITIME AI-NAV)

Funded by

European Space Agency