CYBERSECURITY CHALLENGES IN THE UPTAKE OF ARTIFICIAL INTELLIGENCE IN AUTONOMOUS DRIVING

A collaboration between ENISA and the Joint Research Centre, European Commission

Ronan Hamon

C-ITS Webinar
27/04/2021
REPORT

CYBERSECURITY CHALLENGES IN THE UPTAKE OF ARTIFICIAL INTELLIGENCE IN AUTONOMOUS DRIVING

#EUcybersecurity

The Joint Research Centre (JRC)

As the science and knowledge service of the European Commission our mission is to support EU policies with independent evidence throughout the whole policy cycle.
The JRC Facts and figures

Policy neutral: has no policy agenda of its own, but works with over 20 EC policy departments

More than 50 large scale research facilities
More than 110 online databases

About 2,800 staff, nearly 70% of whom are scientific/technical staff

83% of core research staff with PhDs

Over 1,400 scientific publications per year
Policy context – Autonomous Driving European level

2014
Cooperative Intelligent Transport Systems (C-ITS) deployment platform.

2016
European Strategy on Cooperative Intelligent Transport Systems

2016
C-Roads Platform to link C-ITS deployment activities

2017
Initiative considering amendments to the General - and the Pedestrian Safety Regulation

2018
EU Strategy for mobility of the future

2020
Report by an independent group of experts on Ethics of Connected and Automated Vehicles

2020
Implementation of the pilot on common EU-wide cybersecurity infrastructures and processes

2019
Commission Expert group on cooperative, connected, automated and autonomous mobility (CCAM)

2018
Implementation of the EU C-ITS Security Credential Management System (EU CCMS)

2016
Network and Information Security directive

2018
General Data Protection Regulation
AI in autonomous driving - Definition of artificial intelligence

HLEG definition of AI

“Artificial intelligence (AI) refers to systems designed by humans that, given a complex goal, act in the physical or digital world by perceiving their environment, interpreting the collected structured or unstructured data, reasoning on the knowledge derived from this data and deciding the best action(s) to take (according to pre-defined parameters) to achieve the given goal. AI systems can also be designed to learn to adapt their behaviour by analysing how the environment is affected by their previous actions.”

European Commission’s High-level expert group on Artificial Intelligence, from “A definition of AI: main capabilities and scientific disciplines”, 18 December 2018

More data

More computing power

New algorithms

When using machine learning, human developers no longer program an algorithm to tell the computer how to solve a given problem but instead they program it to teach the computer to learn how to solve the problem.
AI in autonomous driving systems – Complexity of deep learning
AI in autonomous driving – Components

Sensors
- Camera
- LIDAR
- Radar
- Ultrasonic
- GNSS
- IMU

HD Maps
- Point Cloud Maps
- Vision Based Maps
- Infrastructures

Perception
- Sensor Fusion
- Behaviour Prediction
- Object Map

Planning
- Path and Motion planning
- Trajectory optimisation
- Driving Policy

Control
- Velocity profile
- Steering
- Acceleration and Braking
AI in autonomous driving – Perception

Scene Understanding
- Identification of roads and lanes
- Detection of moving agents and objects
- Traffic signs and markings recognition
- Sound event classification

Scene Flow Estimation
- Tracking and prediction of objects, moving agents and obstacles

Scene Representation
- Localization
- Occupancy Maps and Grids
Cybersecurity of AI in Autonomous Driving – Normal use

TRAINING

Model

Data

Car

Car

Bike

Bike

Algorithms

$- \sum_{x \in X} p(x) \log q(x)$

DEPLOYMENT

AI

Input

Output

User

car
Cybersecurity of AI in Autonomous Driving – A risk based approach to AI

- Adversarial attacks
- Data poisoning
- Data leakage
- Model theft
- Backdoors

Conceptual model depicting the logical links between the different components of the cybersecurity risk in the context of the influence of AI and Digital Transformation.
Cybersecurity of AI in Autonomous Driving – Adversarial Attack

\[-\sum_{x \in \mathcal{X}} p(x) \log q(x)\]
Cybersecurity of AI in Autonomous Driving – Adversarial Attacks

Experiment done using the Resnet-50 model pretrained on ImageNet dataset. ‘car’ corresponds to label ‘sport car’, ‘bike’ to label ‘mountain bike’. The adversarial perturbation is constrained to be in the red channel, with high intensity dots.
Scenario 1: Adversarial attacks on street markings

1. A malicious actor applies a sticker with physical perturbations onto a stop marking.
2. The camera of the AV sees the stop markings and the sticker.
3. The markings recognition system is deceived into perceiving the stop marking.
4. The planning and control systems handle the situation as if there was no stop.
Scenario 2: Man-in-the-Middle Attack on the AI modules

1. A malicious actor gains access to the vehicle’s ICT system by exploiting a vulnerability.

2. This allows the actor to move freely within the system. They can also tamper with the AI functions.

3. In this case a small perturbation is introduced into the pipeline from the camera to the recognition systems, designed to deceive into not recognizing danger signs.

4. The planning and control systems handle the situation as if there was no danger.
Examples of adversarial attacks – Overflow attack

YOLOv5 object detector: Original image Adversarial Perturbation YOLOv5 object detector: Adversarial image
Examples of adversarial attacks – Spoofing attack
Cybersecurity of AI in Autonomous Driving – Some real world attack example cases

2019 Tencent researchers tested hacking remotely a Tesla car and attacking the AI-based autopilot systems only with access to the outputs of various neural network models e.g. attacking the lane detection assistance system to turn the car into the reverse lane. Tencent Keen Security Lab, Experimental Security Research of Tesla Autopilot, 2019.

Recommendations

1. Systematic security validation of AI models and data

2. Supply chain challenges related to AI cybersecurity

3. End-to-end holistic approach for integrating AI cybersecurity with traditional cybersecurity principles

4. Incident handling and vulnerability discovery related to AI and lessons learned

5. Limited capacity and expertise on AI cybersecurity in the automotive industry
Thank you for your attention

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0) license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

EU Science Hub: ec.europa.eu/jrc
Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

EU Science Hub